

Graphing Quadratic Functions Exploration

1. Using a graphing calculator, graph the function $f(x)=x^{2}$; sketch the graph on the grid using 5 exact points.
a. What is the domain?
b. What is the range?
2. Graph (in a different color) $f(x)=x^{2}+2$ on the same graph using 5 exact points. Describe the difference between this graph and the graph of $f(x)=x^{2}$.
a. What is the domain?
b. What is the range?
3. Graph (in a different color) $f(x)=x^{2}-3$ on the same graph using 5 exact points. Describe the difference between this graph and the graph of $f(x)=x^{2}$.
a. What is the domain?
b. What is the range?
4. Describe the effect of k on the equation $f(x)=x^{2}+k$
5. Create and graph your own function and determine if your hypothesis (answer from \#4) is correct.

6. Graph (in a different color) $f(x)=(x+2)^{2}$ on the provided graph using 5 exact points. Describe the difference between this graph and the graph of $f(x)=x^{2}$.
a. What is the domain?
b. What is the range?
7. Graph (in a different color) $f(x)=(x-3)^{2}$ on the same graph using 5 exact points. Describe the difference between this graph and the graph of $f(x)=x^{2}$.
a. What is the domain?
b. What is the range?
8. Describe the effect of h on the equation $f(x)=(x-h)^{2}$
9.

Create and graph your own function and determine if your hypothesis (answer from \#8) is correct.

10. Graph (in a different color) $f(x)=2 x^{2}$ on the provided graph using 5 exact points. Describe the difference between this graph and the graph of $f(x)=x^{2}$.
a. What is the domain?
b. What is the range?
11. Graph (in a different color) $f(x)=\frac{1}{2} x^{2}$ on the same graph using 5 exact points. Describe the difference between this graph and the graph of $f(x)=x^{2}$.
a. What is the domain?
b. What is the range?
12. Graph (in a different color) $f(x)=-x^{2}$ on the provided graph using 5 exact points. Describe the difference between this graph and the graph of $f(x)=x^{2}$.
a. What is the domain?
b. What is the range?
13. Graph (in a different color) $f(x)=-3 x^{2}$ on the same graph using 5 exact points. Describe the difference between this graph and the graph of $f(x)=x^{2}$.
a. What is the domain?
b. What is the range?
14. Describe the effect of a on the equation $f(x)=a x^{2}$
15.

Create and graph your own function and determine if your hypothesis (answer from \#14) is correct.

Practice A - Graphing Quadratic Functions

Write the equation of the parabolas graphed below. Use your calculator to check your answer. Verify at least 3 points.

Equation: \qquad
Vertex: \qquad
Domain: \qquad
Range: \qquad
3.

Equation: \qquad
Vertex: \qquad
Domain: \qquad
Range: \qquad
2.

Equation: \qquad
Vertex: \qquad
Domain: \qquad
Range: \qquad
4.

Equation: \qquad
Vertex: \qquad
Domain: \qquad
Range: \qquad

Practice B - Graphing Quadratic Functions

In the following functions, the transformations have been combined on the quadratic function that you just discovered. Graph the following functions with at least 3 precise points.

1. $f(x)=(x+2)^{2}-3$

2. $f(x)=-\frac{1}{2}(x+2)^{2}$

3. $f(x)=-(x-1)^{2}+4$

4. $f(x)=3 x^{2}-5$

5. $f(x)=2(x-2)^{2}-1$
6. $f(x)=-(x+3)^{2}+4$

