

V

Hath-Aids.Com

₹

Graphing Quadratic Functions Exploration

- 1. Using a graphing calculator, graph the function $f(x) = x^2$; sketch the graph on the grid using 5 exact points.
 - a. What is the domain?
 - b. What is the range?
- 2. Graph (in a different color) $f(x) = x^2 + 2$ on the same graph using 5 exact points. Describe the difference between this graph and the graph of $f(x) = x^2$.
 - a. What is the domain?
 - b. What is the range?
- 3. Graph (in a different color) $f(x) = x^2 3$ on the same graph using 5 exact points. Describe the difference between this graph and the graph of $f(x) = x^2$.
 - a. What is the domain?
 - b. What is the range?
- 4. Describe the effect of *k* on the equation $f(x) = x^2 + k$

 Create and graph your own function and determine if your hypothesis (answer from #4) is correct.

- 6. Graph (in a different color) $f(x) = (x+2)^2$ on the provided graph using 5 exact points. Describe the difference between this graph and the graph of $f(x) = x^2$.
 - a. What is the domain?
 - b. What is the range?
- 7. Graph (in a different color) $f(x) = (x-3)^2$ on the same graph using 5 exact points. Describe the difference between this graph and the graph of $f(x) = x^2$.
 - a. What is the domain?
 - b. What is the range?
- 8. Describe the effect of *h* on the equation $f(x) = (x h)^2$

- 10. Graph (in a different color) $f(x) = 2x^2$ on the provided graph using 5 exact points. Describe the difference between this graph and the graph of $f(x) = x^2$.
 - a. What is the domain?
 - b. What is the range?

11. Graph (in a different color) $f(x) = \frac{1}{2}x^2$ on the same graph using 5 exact points. Describe the difference between this graph and the graph of $f(x) = x^2$.

- a. What is the domain?
- b. What is the range?
- 12. Graph (in a different color) $f(x) = -x^2$ on the provided graph using 5 exact points. Describe the difference between this graph and the graph of $f(x) = x^2$.
 - a. What is the domain?
 - b. What is the range?
- 13. Graph (in a different color) $f(x) = -3x^2$ on the same graph using 5 exact points. Describe the difference between this graph and the graph of $f(x) = x^2$.
 - a. What is the domain?
 - b. What is the range?
- 14. Describe the effect of *a* on the equation $f(x) = ax^2$

15. Create and graph your own function and determine if your hypothesis (answer from #14) is correct.

Practice A – Graphing Quadratic Functions

Write the equation of the parabolas graphed below. Use your calculator to check your answer. Verify at least 3 points.

	2.
Equation:	Equation:
Vertex:	Vertex:
Domain:	Domain:
Range:	Range:
3.	4.
Equation:	Equation:
Vertex:	Vertex:
Domain:	Domain:
Range:	Range:

Practice B – Graphing Quadratic Functions

In the following functions, the transformations have been combined on the quadratic function that you just discovered. Graph the following functions with at least 3 precise points.

1.
$$f(x) = (x+2)^2 - 3$$

2. $f(x) = -(x-1)^2 + 4$
3. $f(x) = 2(x-2)^2 - 1$
10 -8 -6 -4 -2 -2 -2 -4 -6 -8 -10
-10 -8 -6 -4 -2 -2 -2 -4 -6 -8 -10
-10 -8 -6 -4 -2 -2 -2 -4 -6 -8 -10
-10 -8 -6 -4 -2 -2 -2 -4 -6 -8 -10
-10 -8 -6 -4 -2 -2 -2 -4 -6 -8 -10
-10 -8 -6 -4 -2 -2 -2 -4 -6 -8 -10
-10 -8 -6 -4 -2 -2 -2 -4 -6 -8 -10
-10 -8 -6 -4 -2 -2 -2 -4 -6 -8 -10
-10 -8 -6 -4 -2 -2 -2 -4 -6 -8 -10
-10 -8 -6 -4 -2 -2 -2 -4 -6 -8 -10
-10 -8 -6 -4 -2 -2 -2 -4 -6 -8 -10
-10 -8 -6 -4 -2 -2 -2 -4 -6 -8 -10
-10 -8 -6 -4 -2 -2 -2 -4 -6 -8 -10
-10 -8 -6 -4 -2 -2 -2 -4 -6 -8 -10
-10 -8 -6 -4 -2 -2 -2 -4 -6 -8 -10
-10 -8 -6 -4 -2 -2 -2 -4 -6 -8 -10
-10 -8 -6 -4 -2 -2 -2 -4 -6 -8 -10
-10 -8 -6 -4 -2 -2 -2 -4 -6 -8 -10
-10 -8 -6 -4 -2 -2 -2 -4 -6 -8 -10
-10 -8 -6 -4 -2 -2 -2 -4 -6 -8 -10
-10 -8 -6 -4 -2 -2 -2 -4 -6 -8 -10
-10 -8 -6 -4 -2 -2 -2 -4 -6 -8 -10
-10 -8 -6 -4 -2 -2 -2 -4 -6 -8 -10
-10 -8 -6 -4 -2 -2 -2 -4 -6 -8 -10
-10 -8 -6 -4 -2 -2 -2 -2 -4 -6 -8 -10
-10 -8 -6 -4 -2 -2 -2 -2 -4 -6 -8 -10
-10 -8 -6 -4 -2 -2 -2 -2 -4 -6 -8 -10
-10 -8 -6 -4 -2 -2 -2 -2 -4 -6 -8 -10
-10 -8 -6 -4 -2 -2 -2 -2 -4 -6 -8 -10
-10 -8 -6 -4 -2 -2 -2 -2 -4 -6 -8 -10
-10 -8 -6 -4 -2 -2 -2 -2 -4 -6 -8 -10
-10 -8 -6 -4 -2 -2 -2 -2 -4 -6 -8 -10
-10 -8 -6 -4 -2 -2 -2 -2 -4 -6 -8 -10
-10 -8 -6 -4 -2 -2 -2 -2 -4 -6 -8 -10
-10 -8 -6 -4 -2 -2 -2 -2 -4 -6 -8 -10
-10 -8 -6 -4 -2 -2 -2 -2 -4 -6 -8 -10
-10 -8 -6 -4 -2 -2 -2 -2 -4 -6 -8 -10
-10 -8 -6 -4 -2 -2 -2 -2 -4 -6 -8 -10
-10 -8 -6 -4 -2 -2 -2 -2 -2 -4 -6 -8 -10
-10 -8 -6 -4 -2 -2 -2 -2 -4 -6 -8 -10
-10 -8 -6 -4 -2 -2 -2 -2 -2 -4 -6 -8 -10
-10 -8 -6 -4 -2 -2 -2 -2 -4 -6 -8 -10
-10 -8 -6 -4 -2 -2 -2 -2 -4 -6 -8 -10
-10 -8 -6 -4 -2 -2 -2 -2 -4 -6 -8 -10
-10 -8 -6 -4 -2 -2 -2 -2 -4 -6 -8 -10
-10 -8 -6 -4 -2 -2 -2 -2 -4 -6 -8 -10
-10 -8 -6 -4 -2 -2 -2 -2 -4 -6 -8 -10
-10 -8 -6 -4 -2 -2 -2 -2 -4 -6 -8 -10
-10 -8 -6 -4 -2 -2 -2 -2 -4 -6 -8 -10
-10 -8 -6 -4 -2 -2 -2 -2 -4 -6 -8 -10
-10 -8 -6 -4 -2 -2 -2 -2 -4 -6 -8 -10

4.
$$f(x) = -\frac{1}{2}(x+2)^2$$

5. $f(x) = 3x^2 - 5$

6. $f(x) = -(x+3)^2 + 4$

